Enhancing the Seebeck coefficient of Zn-doped MoS2 grown over carbon fabrics via band engineering

V. Shalini a, b, S. Harish<sup>c</sup>, H. Ikeda a,b\*, J. Archana<sup>c</sup>, M. Navaneethan<sup>c</sup>

<sup>a</sup>Research Institute of Electronics, Shizuoka University, 3-5-1 Johoku, Naka-Ku, Hamamatsu, Shizuoka 432-8011, Japan

<sup>b</sup>Graduate School of Science and Technology, Shizuoka University, 3-5-1 Johoku, Naka-Ku, Hamamatsu, Shizuoka 432-8011, Japan

<sup>c</sup>Functional Materials and Energy Devices Laboratory, Department of Physics and Nanotechnology, SRM Institute of Science and Technology, Kattankulathur, Chennai 603203, Tamil Nadu, India



## **Surface Analysis**



- Pristine MoS<sub>2</sub> and Zn doped MoS<sub>2</sub> showed flower-like morphology by interweaving the nanosheets of MoS<sub>2</sub>
- The analysis showed the uniform growth of pristine and Zn doped MoS<sub>2</sub> over carbon fabric
- Elemental mapping of Zn6
- TEM and HR-TEM of Zn4 and Zn6

# **Elemental Mapping**





## **Thermoelectrics-Thermal conductivity**



- The maximum electrical conductivity obtained was 27.8 S/cm for the Zn2 sample.
- The maximum Seebeck coefficient was around 11.01 µV K<sup>-1</sup> has been achieved for 2 at% of Zn doped MoS2 (Zn2).
- Maximum power factor was 3.37 nW/cmK<sup>2</sup>

# **Properties of MoS<sub>2</sub>**

- Good chemical stability and thermal stability
- Low thermal conductivity
- Low cost
- Bandgap of around 1.2 to 1.9 eV

#### Carbon Fabric

- Good conducting material
- Flexible
- Heat resistant
- Good adsorbing property

# Structure **Energy filtering** e- High energy electron





- B. E. (eV) • C 1s- 284.4 eV corresponding to C = C/C -C bonding, 285.4 and 286.2 corresponds to C - O/C - H
- 232.8 and 229.5 eV corresponds to Mo  $3d_{3/2}$  and Mo  $5d_{5/2}$  of Mo<sup>4+</sup> state 227 and 226.9 eV corresponds to S 2s state • The peak at 236.5 eV can be attributed to the 3d<sub>3/2</sub> of Mo<sup>6+</sup> state and this has been due to the Mo–O–C bonds formed between CF and MoS<sub>2</sub>
- nanosheets. S 2p peaks were observed at 163.7 and 162.2 eV, which are assigned to S  $2p_{1/2}$  and S  $2p_{3/2}$  states of S<sup>2-</sup> and the peaks at 169.4 eV correspond to
- C = S, which confirms the creation of C-S chemical bonding as well as the strong interaction between MoS<sub>2</sub> and carbon fabric

### **Conclusion**

- Pristine and Zn doped MoS<sub>2</sub> nanosheets grown on carbon fabric were successfully synthesised via a one-step hydrothermal method.
- Structural and morphology analysis confirmed the formation of layered MoS<sub>2</sub> on carbon fabric.
- Compositional analysis confirmed the interaction between carbon fabric and MoS<sub>2</sub> The maximum electrical conductivity obtained was 27.8 S/cm for the Zn2 sample.
- The maximum Seebeck coefficient was around 11.1 µV K<sup>-1</sup> has been achieved for 2 at% of Zn doped  $MoS_2(Zn2)$ .

# **Future work**

