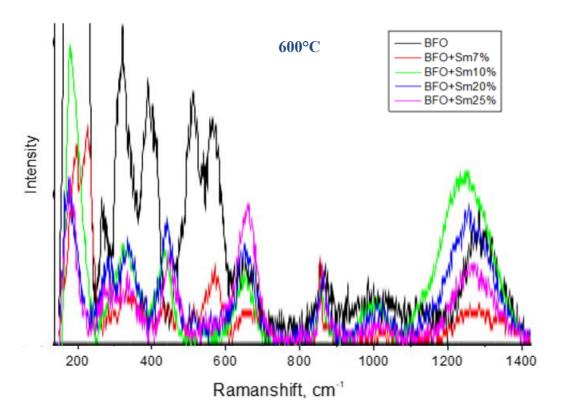
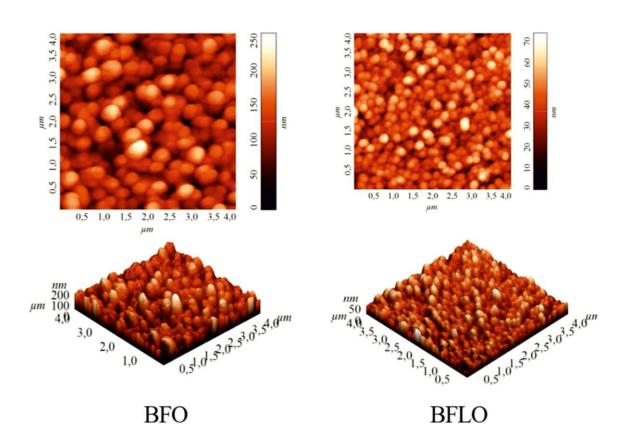
Raman investigation of multiferroic BiFeO₃ and Bi_{1-x}Sm_xFeO₃ materials synthesized by the sol-gel method

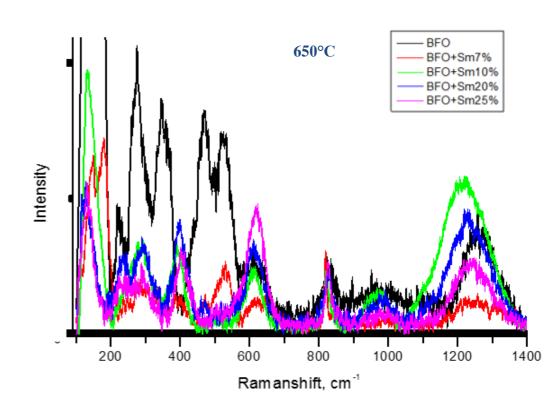
O. Fesenko¹, T. Tsebriienko¹, A. Yaremkevych¹, V.V. Sidsky², A.V. Semchenko², V.E. Gaishun², D.L. Kovalenko², S.A. Khakhomov² ¹Institute of Physics NASU, Nauki av., 46, Kyev, Ukraine ²F. Skorina Gomel State University, Sovetskaya 104, Gomel, 246019, Belarus


The main stages of sol-gel process

Stoichiometry calculation Bi(NO₃)₃, Fe(NO₃)₃ and C₆H₈O₇


Heating of Bi-Fe-O powder at 180°C for 2 hours

Sintering process at 550°C for 10 hours respectively and additionally 600, 700 °C for 3 hours respectively


> Thermo-treatmen in air BiFeO₃ powder

Raman spectra of BFO with different concentration of Sm (600°C)

AFM image of BiFeO₃ (left) and Bi_{0.9}La_{0.1}FeO₃ (right) powders hours

Raman spectra of BFO with different concentration of Sm (650°C)

The position of Raman modes for the samples

Raman			600°C					650°C		
mode	BFO	BFO+Sm7%	BFO	BFO	BFO	BFO	BFO+Sm7%	BFO+Sm10%	BFO+Sm20%	BFO
(cm ⁻¹)			+Sm10%	+Sm20%	+Sm25%					+Sm25%
A1-1	140	148	133	130	133	139	147	137	132	130
A1-2	171	179	-	-	-	170	180	181	-	-
A1-3	220	230	-	-	-	225	236	240	238	235
E	276	290	291	290	289	276	281	288	295	296
A1-4	346	399	394	398	402	344	400	401	404	403
E	470	472	-	-	-	469	478	474	-	-
E	525	530	-	-	-	524	530	527	-	-
E	614	615	616	617	619	612	613	611	612	613

Multiferroic materials (BiFeO₃ and Bi_{1-x}Sm_xFeO₃) with perovskite structure (600°C and 650°C annealing temperature) with different Sm content from 7% to 25% were synthesized by sol-gel method and were investigated by Raman spectroscopy. It was established that with increasing number of doping atoms A1-1 and A1-2 modes almost merge together demonstrating the existence of the tetragonal phase with higher crystal symmetry. Transferr

This work was funding from the European Union's Horizon 2020 research and innovation programme under Marie Sklodowska-Curie grant agreement № 778070.

This work was carried out with the partial support of the Belarusian Republican Foundation for Fundamental Research (grant <u>№720P-359).</u>