Investigation of the effect of observation window on the sensitivity enhancement in the multi-pass cell outside the expansion wave tube chamber

Ryuji Kobayashi, Hiroaki Sakai, Makoto Matsui (Shizuoka University)

3. Calculations Conditions 1. Background 4. Experimental system **Reproduce re-entry condition at ground Ray-tracing method** Lambert-Baer law • Obtain the trajectory of a reflected ray $I_{\nu}(x)$: Through light Shock tunnel $I_{\nu}(x) = I_0 \exp(-k_{\nu} x)$ intensity No near-axis approximation Arc-Heated wind Tunnel **Expansion tube**

- Consider the spread of the ray
- Tolerance is defined as the interval in which sensitivity does not change

 ν : Laser frequency *x*: Light path length I_0 : Laser intensity k_{ν} : Absorption coefficient *a* : Absorbance

HEK-X is one of **the biggest expansion-tube** Expects operations for the next mission

Measuring flow condition is needed for operating

• Temperature

HEK-X (at JAXA)

- Density
- Flow speed

Laser Absorption Spectroscopy (LAS) is able to measure these value with high time resolution.

Produces a high-speed,

low-temperature flow and

molecules of oxygen and

nitrogen do not diverge.

However, the sensitivity of the LAS targeting oxygen molecules was not enough...

High Sensitization Methods of LAS				
	WMS	ICOS	Multi- pass	
Sensitivity	<100	10 ³ -10 ⁴	10-100	
Time resolution	> ms	> s	< 10us	
Spatial resolution	0	Δ	Δ	

Calculation parameter			
Parameters	Symbol	Conditions	
Concave mirror size	Ms	50.0 mm	
Concave mirror focus length	f	200 mm	
Mirror distance	d	350 ~ 400 mm	
Initial position	Sr	0 ~ Ms/2	
Initial angle of x-axis	θ	$-\tan^{-1}\frac{0.5M_s+S_r}{d} \sim \tan^{-1}\frac{0.5M_s-S_r}{d}$	
Initial angle of y-axis	δ	$0 \sim tan^{-1} \frac{S_r}{d}$	
Entrance and exit hole		2.0 mm	
Beam diameter		1.0 mm	
Window distance		170 mm	
Refractive index		1.513	
Window thickness		4.0 mm	

Previous study¹ Concave Mirror B 10mm Low Pressure Tube 15mm Pressure sensor APD Rod Mirror Laser Concave Isolator Etalon Mirror A Laser PD Beam Diode Splitter1 Single Mode Fiber Multi-pass LAS for ISAS expansion tube

- The sensitivity was increased by 44 times
- Estimated test time was **30~80 us**
- The translational temperature of the oxygen molecules was **3000** ~ **5000** K

However, the observation windows were

\mathbf{v}

5

mm

Judgment conditions for sensitivity

- Beam diameter is within *Ms* range
- Calculation ends when the beam overlaps the entrance hole → **sensitivity calculation**

Exclude patterns that are affected by overlap

6. Experimental Results

172 times

The relationship between sensitivity and tolerance in observation windows inclination (sensitivity 0 is overlap)

- It was not possible to create multi-pass cell (exotic pattern) of over 200 times.
- If the window is tilted just 0.3°, overlap will

Sensitivity, times The relationship between sensitivity and tolerance in observation windows inclination and mirror distance The pattern of the multi-pass cell changes from a single circle to an exotic pattern. 100x 1754x Tolerance of mirror distance More 10 times **Tolerance of observation windows** inclination

take and sensitivity will change.

The tolerance for window inclination is stricter than calculated, **because of the effects of** overlap.

It is better not to use observation windows when the sensitivity is over 100 times.

7. Summary

- Tolerance of observed window inclination is 10 times more than tolerance of mirror distance.
- However, in experimental results, the effect of

overlap makes it more stricter than calculated.

Inter-Academia 2021 @ vartual